Human Motion Synthesis by Motion Manifold Learning and Motion Primitive Segmentation
نویسندگان
چکیده
We propose motion manifold learning and motion primitive segmentation framework for human motion synthesis from motion-captured data. High dimensional motion capture date are represented using a low dimensional representation by topology preserving network, which maps similar motion instances to the neighborhood points on the low dimensional motion manifold. Nonlinear manifold learning between a low dimensional manifold representation and high dimensional motion data provides a generative model to synthesize new motion sequence by controlling trajectory on the low dimensional motion manifold. We segment motion primitives by analyzing low dimensional representation of body poses through motion from motion captured data. Clustering techniques like k-means algorithms are used to find motion primitives after dimensionality reduction. Motion dynamics in training sequences can be described by transition characteristics of motion primitives. The transition matrix represents the temporal dynamics of the motion with Markovian assumption. We can generate new motion sequences by perturbing the temporal dynamics.
منابع مشابه
Video Subject Inpainting: A Posture-Based Method
Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...
متن کاملRobust Multiple Manifold Structure Learning
We present a robust multiple manifolds structure learning (RMMSL) scheme to robustly estimate data structures under the multiple low intrinsic dimensional manifolds assumption. In the local learning stage, RMMSL efficiently estimates local tangent space by weighted low-rank matrix factorization. In the global learning stage, we propose a robust manifold clustering method based on local structur...
متن کاملModeling Human Motion Using Manifold Learning and Factorized Generative Models
OF THE DISSERTATION Modeling Human Motion Using Manifold Learning and Factorized Generative Models by Chan-Su Lee Dissertation Director: Ahmed Elgammal Modeling the dynamic shape and appearance of articulated moving objects is essential for human motion analysis, tracking, synthesis, and other computer vision problems. Modeling the shape and appearance of human motion is challenging due to the ...
متن کاملLatent Space Segmentation for Mobile Gait Analysis1 ARIS VALTAZANOS and D.K. ARVIND and SUBRAMANIAN RAMAMOORTHY
An unsupervised learning algorithm is presented for segmentation and evaluation of motion data from the on-body Orient wireless motion capture system for mobile gait analysis. The algorithm is model-free and operates on the latent space of the motion, by first aggregating all the sensor data into a single vector, and then modeling them on a low-dimensional manifold to perform segmentation. The ...
متن کاملIncremental episodic segmentation and imitative learning of humanoid robot through self-exploration
Imitation learning through self-exploration is an essential mechanism in developing sensorimotor skills for human infants as well for robots. We assume that a primitive sense of self is the prerequisite for successful social interaction rather than an outcome of it. During imitation learning, a crucial element of conception involves segmenting the continuous flow of motion into simpler units – ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006